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1. Introduction

The principal motivation behind noncommutative fuzzy physics [1 – 4] is the construction

of a new nonperturbative method for gauge theories ( commutative and noncommutative

) based on the fuzzy sphere S2
N and its cartesian products. The actions we obtain on S2

N

are essentially finite dimensional matrix models. The noncommutative Moyal-Weyl spaces

are also matrix models not continuum manifolds. They only act on infinite dimensional

Hilbert spaces and thus we can use the fuzzy sphere and its cartesian products as finite

dimensional regularizations of these spaces. The limit N−→∞ is the limit of the continuum

sphere. The double scaling noncommutative planar limit of large R ( radius of the sphere

) and large N keeping R2/N fixed equal to θ2 is the limit of the noncommutative plane.

In this article we will illustrate this approach by reviewing the example of noncom-

mutative fuzzy quenched QED2 in which the fuzzy sphere [6] is the underlying regulator.

Then we will generalize the results to the 4−dimensional case where the underlying space

is fuzzy S2×S2 [5]. Perturbation theory on fuzzy S2×S2 can be found in the first reference

of [13]. Quantum fuzzy fermions will be discussed elsewhere [11]. The theories we get by

including fermions are the noncommutative fuzzy Schwinger model and noncommutative

fuzzy QED4. For noncommutative Moyal-Weyl QED see [29 – 32]. Fuzzy QED as opposed

to Moyal-Weyl QED is fully SO(4)−invariant and fully finite.
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An alternative way of regularizing gauge theories on the Moyal-Weyl noncommutative

space is based on the matrix model formulation of the twisted Eguchi-Kawai model [25].

For example a non-perturbative study of pure two dimensional noncommutative gauge

theory was performed in [26].

However the advantage of the fuzzy regulator compared to the Eguchi-Kawai models

and/or to ordinary lattice prescriptions is that discretization by quantization which leads to

noncommutative fuzzy spaces is remarkably successful in preserving symmetries and topo-

logical features [27, 28]. Most important of all are topological quantities, chiral fermions

and supersymmetries which can be formulated in a rigorous way on fuzzy spaces [1 – 4].

2. Noncommutative fuzzy quenched QED2

Let us review noncommutative fuzzy quenched QED2.

Noncommutative U(n) gauge theory in two dimensions on the fuzzy sphere S2
L+1 can

be given in terms of three N ×N matrices Xa ( N = n(L+1) ) through the pure 3−matrix

model action ( with 2 parameters α and m )

S = N

[
− 1

4
Tr[Xa,Xb]

2 +
2iα

3
εabcTrXaXbXc

]
− Nm2α2TrX2

a +
Nm2

2c2
Tr(X2

a)2. (2.1)

This action is invariant under 1) U(N) unitary transformations and 2) SU(2) rotations.

The classical absolute minimum of the model is given by the fuzzy sphere configurations [6]

Xa = αLa⊗1n (2.2)

La are the generators of spin L
2 IRR of SU(2) which satisfy [La, Lb] = iεabcLc , c2 =∑

a L2
a = L

2 (L
2 + 1). The coordinates on the fuzzy sphere S2

L+1 are defined by

x2
1 + x2

2 + x2
3 = 1 , [xa, xa] =

i√
c2

εabcxc, xa =
La√
c2

. (2.3)

Expanding the action (2.1) around this solution by writing Xa = αRDa yields U(n) gauge

theory on the fuzzy sphere which is given by

SL,R =
R2

4g2N
TrF 2

ab −
R

2g2N
εabcTr

[
1

2
FabAc −

i

6
[Aa, Ab]Ac

]
+

2m2R2

g2N
TrΦ2. (2.4)

In above Da = 1
R

La + Aa, Fab = i[Da,Db] + 1
R

εabcDc and Φ is the covariant scalar field

Φ = 1
2R

(xaAa +Aaxa)+
A2

a

2
√

c2
where R is the radius of the sphere and g2 = 1/(N2R2α4) has

now the dimension of (lenght)−2. The limit m−→∞ means that the normal component of

Aa ( i.e Φ = Aana ) is 0.

The other limit of interest is a double scaling noncommutative planar limit of large R

and large L taken together restricting the theory in a covariant way around the north pole
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and keeping R2/
√

c2 fixed equal θ2. The action (2.4) ( with m = 0 1 ) is seen to tend to

the action [7]

Sθ =
θ2

8g2
TrF̂ 2

ij =
θ2

8g2
Tr

(
i[D̂i, D̂j ] +

1

θ2
εij

)2

. (2.5)

Here D̂i = 1
θ2 x̂i + Âi, D̂3 = R

θ2 where D̂a = Da, Âa = Aa and

[x̂i, x̂j ] = iθ2εij , x̂3 = R , x̂a = Rxa. (2.6)

In two dimensions the action (2.5) is the infinite dimensional matrix model describing U(n)

gauge theory on the noncommutative Moyal-Weyl plane [8]. In this case the trace Tr is an

infinite dimensional trace.

The action (2.4) with the Chern-Simons-like term and with m = 0 is precisely what we

obtain in the zero-slope limit of the theory of open strings moving in a curved background

with S3 metric in the presence of a non-zero NS B-field [9]. The action (2.5) is obtained

on the other hand when open strings are moving in a flat background [10].

As it turns out the path integrals of U(n) models on the fuzzy sphere S2
L+1 given

by (2.1) are in one-to-one correspondence with the path integrals of U(1) models on the

fuzzy spheres S2
N with N = n(L + 1) and thus it is enough to consider only the U(1)

case [11]. These U(1) theories are given by the matrix models (2.1) or the noncommutative

gauge actions (2.4) with N = L+1. In the remainder of this introduction we will discuss the

quantum U(1) gauge theory on the fuzzy sphere S2
N . In perturbation theory the quadratic

effective action for the U(1) theory on S2
N given by (2.4) with the value m = 0 is found in

the continuum limit N−→∞ to be given ( modulo scalar-type terms ) by [12]

Γ[A] =
1

4g2

∫
dΩ

4π
Fab

(
1 + 4g2 ∆3

L2

)
Fab −

1

4g2
εabc

∫
dΩ

4π
Fab

(
1 + 4g2 ∆3

L2

)
Ac + . . . . (2.7)

L2 is the Laplacian on the commutative sphere L2 = L2
a, La = −iεabcnb∂c. The operator

∆3 is a function of the Laplacian L2 which is defined by its eigenvalues on the spherical

harmonics Ypm given by ∆3(p) =
∑p

n=2 1/n. The 1 in 1 + 4g2∆3/L2 corresponds to the

classical action whereas ∆3/L2 is the quantum correction. This provides a non-local renor-

malization of the inverse coupling constant 1/g2. We have thus established the existence

of a gauge-invariant UV-IR mixing problem in U(1) gauge theory on the fuzzy sphere for

m = 0. Indeed we can immediately see that in the planar limit the eigenvalues of ∆3/L2

behave as log p/p2 which show a typical singularity at zero momentum associated with

the usual UV-IR mixing phenomena [13]. In this planar limit we can also show that this

singularity at p−→0 is equivalent to a singularity at θ−→0 in accordance with [14].

The same result will hold for generic values of the parameter m. However we can show

that this UV-IR mixing problem is due to the scalar sector of the model in the following

sense. If we decide to quantize the model (2.4) and then take the limit m−→∞ and then

the limit N−→∞ then one finds that the effective action of the two-dimensional gauge

1The terms which are proportional to m2 are not needed in this limit.
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field will be given essentially by the classical action and hence there will be no UV-IR

mixing phenomena. In other words the fuzzy model in this limit is just a fully finite and

fully symmetric truncation of the continuum. This complete regularization of the UV-IR

mixing through taking a double scaling limit in this particular way happens only in 2

dimensions with gauge fields [12]. The origin of the UV-IR mixing in this case seems to

lie in the coupling of the 2 dimensional gauge field to the extra mode present in the model

which is the normal scalar component Φ of Aa. This coupling is however unavoidable

because the differential calculus on the fuzzy sphere is intrinsically 3−dimensional. The

limit m−→∞ kills this mode in a covariant way. This perturbative result seems also to

be consistent with the 1/N expansion of [15] but not with the full non-perturbative study

done using numerical Monte Carlo simulation in [16]. So clearly this perturbative picture

is not the full story.

A more (almost non-perturbative) direct check for the UV-IR mixing in this theory can

be given in terms of the effective potential. The quantum minimum is found by considering

the configurations

Xa = αφLa (2.8)

where the order parameter αφ plays the role of the radius of the sphere. For small values

of m the complete one-loop effective potential is given in the large N limit by (with α̃ =√
Nα) [12]

Veff = 2c2α̃
4

[
1

4
φ4 − 1

3
φ3 +

1

4
m2(φ2 − 1)2

]
+ 4c2 log φ (2.9)

The equation of motion ∂Veff/∂φ = 0 admits two real solutions where we can identify the

one with the least energy with the actual radius of the sphere. However this is only true

up to a certain value α̃∗ of the coupling constant α̃ where no real solution will exist and

as a consequence the fuzzy sphere solution Xa = αφLa will not exist. In other words

the potential Veff below the value α̃∗ becomes unbounded and the fuzzy sphere collapses.

The critical values can be easily computed and one finds by extrapolating to large masses

φ∗ = 1/
√

2 and

α̃∗ =
[ 8

m2 +
√

2 − 1

]1
4 . (2.10)

In other words the phase transition happens each time at a smaller value of the coupling

constant α̃ and thus the fuzzy sphere is more stable. The critical value α̃∗ separates the

”fuzzy sphere phase” where we have a U(1) gauge theory on the fuzzy sphere S2
N from the

”matrix phase” where this picture breakes down completely.

The UV-IR mixing is seen at this non-perturbative level as a transition between com-

pletely different phases of the theory. Indeed by crossing to the matrix phase the radius of

the sphere goes to zero and hence the noncommutativity parameter which is proportional

to R in the planar limit will also go to zero. This is the singlar limit of the UV-IR mixing

discussed above. The fact that (2.10) approaches zero when m−→∞ means that reaching

zero radius becomes more difficult as we increase m and as a consequence the singular limit
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θ−→0 becomes also harder to reach ( i.e smooth ) for these large values of m. Thus from

one hand the fuzzy sphere is becoming more stable and the matrix phase is shrinking while

from the other hand the UV-IR mixing is becoming vansihingly small as m−→∞ which is

our main observation that the two effects must be related at least in this case.

The perturbative UV-IR mixing is a typical property of quantum field theories on

noncommutative spaces which derives from the noncommutativity with no commutative

analogue [8, 14, 17]. At the non-perturbative level this mixing may be related to topology

change. In this case the 2 dimensional spacetime ( the fuzzy sphere ) collapses onto a point

( the matrix phase ) under quantum effects. The UV-IR mixing in this picture is ( possibly

) a reflection of the fact that spacetime itself may evaporates when quantum fluctuations

of fields are taken into consideration in the presence of a non-zero noncommutativity. The

noncommutativity somehow made it possible that fields and spacetime talk to each other

in the same way that gravity does. A very concrete way in implementing this scenario

are the matrix models (2.1) and their generalization to other fuzzy spaces such as fuzzy

CP2 [11]. See [18] for other discussions of fuzzy CP2, [19] for higher fuzzy CPn and [20]

for fuzzy S4. We believe that most fuzzy spaces will have topology change in the same way

that most noncommutative Moyal-Weyl spaces will have UV-IR mixing.

However the action (2.1) does not know a priori about all the above perturbative and

semi-non-perturbative statements which rely on our choice of the vacuum (2.2) and on the

different scaling limits considered. So the nonperturbative behaviour of the model for small

values of α ( or equivalently large values of g ) is not obvious. A fully nonperturbative

study of the U(1) model is done by using Monte Carlo simulations with the Metropolis

algorithm and the action (2.1) in [16]. In particular we compute the phase diagram of the

model. In [21] the study was done for m = 0.

There are three different phases of U(1) gauge theory on S2
N . In the ”matrix phase”

the fuzzy sphere vacuum (2.2) collapses under quantum fluctuations and there is no un-

derlying sphere in the continuum large N limit or underlying Moyal-Weyl plane in the

noncommutative planar limit. This is expected from perturbation theory and the effective

potential calculation. In this phase we have instead a U(N) theory on a point.

The other phase is the “fuzzy sphere phase” where (2.2) is stable. We observe that the

fuzzy sphere phase splits into two distinct regions corresponding to the weak and strong

coupling phases of the gauge field. These are separated by a third order phase transition

which is consistent with that of a one-plaquette model [11, 22]. This was not detected in

perturbation theory. The gauge field in this phase ( in particular across the critical line

and inside the strong coupling phase ) behaves as if it is a large U(N) commutative gauge

theory on a lattice. Although classically and in the very weak coupling phase the model

is a U(1) on S2
N . This U(N) behaviour in the limit is consistent with the fact that we

have U(N) in the matrix phase. So the effect of the matrix phase on the structure of the

gauge group survives even after we cross to the fuzzy sphere phase. However in the light

of the above perturbative calculations there is still a possibility that the model (2.1) with

m fixed to some power of N ( so it is not a free parameter anymore) will not show this

one-plaquette critical line [11]. This is also the expectation of [15].
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3. Classical considerations on fuzzy S2 × S2

U(1) gauge field on fuzzy S2×S2 is associated with a set of six hermitian (L+1)2×(L+1)2

matrices DAB (DAB = −DBA, A,B = 1, 4) which transform homogeneously under the

action of the group, i.e

DAB → UDABU−1, U ∈ U
(
(L + 1)2

)
. (3.1)

The action is given by (with TrL = 1
(L+1)2

Tr, TrL1(L+1)2 = (L + 1)2, g is the gauge

coupling constant and m is the mass of the normal components of the gauge field )

S =
1

16g2

{
−1

4
TrL[DAB ,DCD]2 +

i

3
fABCDEF TrL[DAB ,DCD]DEF

}

+
m2

8g2L2
AB

TrL(D2
AB − L2

AB)2 +
m2

32g2L2
AB

TrL(εABCDDABDCD)2. (3.2)

In the above action fABCDEF are the structure constants of the Lie algebra so(4). Indeed

the generators LAB ( with LAB = −LBA ) satisfy the commutation relations

[LAB , LCD] = ifABCDEF LEF =
i

2

(
δBCLAD − δBDLAC + δADLBC − δACLBD

)

− i

2

(
δDALCB − δDBLCA + δCBLDA − δCALDB

)
.(3.3)

The equations of motion are given by

i[DCD, FAB,CD] +
4m2

√
c2

{DAB ,Φ1 + Φ2} +
m2

√
c2
{εABCDDCD,Φ1 − Φ2} = 0. (3.4)

In above the SU(2) Casimir c2 is given by c2 = L
2 (L

2 + 1). As we will show FAB,CD =

i [DAB ,DCD]+fABCDEF DEF is the curvature of the gauge field on fuzzy S2×S2 whereas Φ1

and Φ2 (defined by D2
AB −L2

AB = 8
√

c2(Φ1 +Φ2) and εABCDDABDCD = 16
√

c2(Φ1 −Φ2))

are the normal components of the gauge field on S2 × S2.

The most obvious non-trivial solution of the equations of motion must satisfy FAB,CD =

0, D2
AB = L2

AB and εABCDDABDCD = 0 (or equivalently FAB = 0, Φi = 0). This solution

is clearly given by the generators LAB of the irreducible representation (L
2 , L

2 ) of SO(4),

viz

DAB = LAB. (3.5)

By expanding DAB around this vacuum as DAB = LAB + AAB and substituting back

into the action (3.2) we obtain a U(1) gauge field AAB on S2
L×S2

L. The matrices DAB

are thus the covariant derivatives on S2
L×S2

L. The curvature FAB,CD in terms of AAB

takes the usual form FAB,CD = iLABACD − iLCDAAB + fABCDEF AEF + i[AAB , ACD].

The normal scalar fields in terms of AAB are on the other hand given by 8
√

c2(Φ1 + Φ2) =

LABAAB+AABLAB+A2
AB and 16

√
c2(Φ1−Φ2) = εABCD(LABACD+AABLCD+AABACD).

– 6 –
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The true gauge field on fuzzy S2 × S2 must in fact be 4−dimensional ( as opposed

to AAB which is 6−dimensional ) and hence the extra two components considered in this

description are scalar fields which are the normal components of AAB on S2 × S2. In the

fuzzy setting there is no known covariant splitting of AAB into a 4−dimensional tangent

gauge field and the above normal components .

In order to discuss the continuum limit of the action (3.2) we introduce the matrices

D
(1)
a = L

(1)
a + A

(1)
a and D

(2)
a = L

(2)
a + A

(2)
a defined by

D(1)
a ≡− 1

2

[
1

2
εabcDbc + Da4

]
, D(2)

a ≡− 1

2

[
1

2
εabcDbc − Da4

]
. (3.6)

Clearly D
(1)
a (A

(1)
a ) and D

(2)
a (A

(2)
a ) are the components of DAB (AAB) on the two spheres

respectively. The curvature becomes F
(ij)
ab = iL(i)

a A
(j)
b − iL(j)

b A
(i)
a + δijεabcA

(i)
c + i[A

(i)
a , A

(j)
b ]

whereas the normal scalar fields become 2
√

c2Φi = (D
(i)
a )2−c2 = L

(i)
a A

(i)
a +A

(i)
a L

(i)
a +(A

(i)
a )2.

In terms of this three dimensional notation the action (3.2) reads

S = S(1) + S(2) + S(1,2)

S(1,2) =
1

2g2
TrL

(
F

(12)
ab

)2
. (3.7)

S(1) and S(2) are the actions for the U(1) gauge fields A
(1)
a and A

(2)
a on a single fuzzy sphere

S2
L. They are given by

S(i) =
1

4g2
TrL

(
F

(i)
ab

)2
− 1

2g2
εabcTrL

[
1

2
F

(i)
ab A(i)

c − i

6
[A(i)

a , A
(i)
b ]A(i)

c

]
+

2m2

g2
TrLΦ2

i .

(3.8)

It is immediately clear that in the continuum limit L−→∞ the action (3.7) describes the

interaction of a genuine 4−d gauge field with the normal scalar fields Φi = n
(i)
a A

(i)
a where

n
(i)
a is the unit normal vector to the i-th sphere. Let us also remark that in this limit

the 3−dimensional fields A
(i)
a decompose as A

(i)
a = (A

(i)
a )T + n

(i)
a Φi where (A

(i)
a )T are the

tangent 2−dimensional gauge fields. Since the differential calculus on S2×S2 is intrinsically

6−dimensional we can not decompose the fuzzy gauge field in a similar (gauge-covariant)

fashion and as a consequence we can not write an action on the fuzzy S2 × S2 which will

only involve the desired 4−dimensional gauge field.

4. Note on Monte Carlo simulations and matrix models

Before we proceed to the one-loop quantum theory let us say few words about Monte Carlo

simulations of the above model. The action S(1) on the first sphere can be put in the form

S(1) = N

[
− 1

4
Tr[Xa,Xb]

2 +
2iα

3
εabcTrXaXbXc

]
− Nm2α2TrX2

a +
Nm2

2c2
Tr(X2

a)2.(4.1)

The action S(2) on the second sphere is similarly given by

S(2) = N

[
− 1

4
Tr[Ya, Yb]

2 +
2iα

3
εabcTrYaYbYc

]
− Nm2α2TrY 2

a +
Nm2

2c2
Tr(Y 2

a )2. (4.2)

– 7 –
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Now N = (L + 1)2, Xa = αD
(1)
a , Ya = αD

(2)
a , Nα4 = α̃4/N = 1/(Ng2). The coupling

between the two spheres is given by the action

S(12) = −N

2
Tr[Xa, Yb]

2. (4.3)

The action which will be relevant for the numerical simulation is the matrix model given

by the sum S(1) + S(2) + S(12) [11].

To study the noncommutative planar limit we should instead consider the following

action on the first sphere [11]

S(1) = NTr

[
− 1

4
[Xa,Xb]

2 + iαεabcXaXbXc +
α2

2
X2

a

]
− Nm2α2TrX2

3 +
Nm2

2c2
Tr(X2

3 )2.

(4.4)

In above Xa = αRD
(1)
a , g2 = 1/(N2R2α4) and m = Np with some power p. The first term

is the action (2.4) without the Chern-Simons-like terms and without the mass term whereas

the second term implements in the limit the constraint D3 = R/θ2 which means that we

are restricted to the north pole in a covariant way. This action is gauge invariant but not

rotationally invariant. For the seond sphere we should write a similar action whereas the

coupling between the two spheres remains unchanged.

5. The one-loop quantum effective action

The partition function of the theory depends on 3 parameters, the Yang-Mills coupling

constant g, the mass m of the normal scalar fields, and the size L of the matrices. Using

the background field method we obtain the one-loop effective action

Γ [DAB ] = S [DAB] +
1

2
Tr6TR log ΩABCD − TR logD2

AB . (5.1)

ΩABCD is defined by

ΩABCD =
1

2
D2

EF δAB,CD −
(

1 − 1

ξ

)
DABDCD − 2iFABCD +

4m2

L2
AB

Ω
(1)
ABCD, (5.2)

where δAB,CD = δACδBD − δADδBC , and

Ω
(1)
ABCD = (D2

EF − L2
EF )δAB,CD +

1

2
(εEFGHDEF DGH)εABCD

−DABDCD − D̃ABD̃CD + 4DABDCD + 4D̃ABD̃CD. (5.3)

The notation DAB and FABCD means that the covariant derivative DAB and the curvature

FABCD act by commutators, i.e DAB(M) = [DAB ,M ], FABCD(M) = [FABCD,M ] where

M is an element of Mat(L+1)2 . We have also introduced the notation D̃AB ≡ 1
2εABCDDCD.

TR is the trace over the 4 indices corresponding to the left and right actions of operators

on matrices. Tr6 is the trace associated with the action of SU(2)×SU(2).

– 8 –
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In the remainder of this letter we will use mainly three dimensional indices. The

effective action simplifies considerably in the Feynman gauge ξ = 1 and for m = 0. We can

compute

1

2
Tr6TR log ΩABCD =

∫
dX(1)

a e−4TrX
(1)
a Ω

(1)
ab

X
(1)
b

×
∫

dX(2)
a e−4TrX

(2)
a Ω

(2)
ab

X
(2)
b e32iT r(X

(1)
a F(12)

ab
X

(2)
b

+X
(2)
a F(21)

ab
X

(1)
b

)

=

∫
dX(1)

a e−4TrX
(1)
a

(
Ω

(1)
ab

+Ω
(12)
ab

)
X

(1)
b

×
∫

dX(2)
a e

−4Tr
(
X(2)−8iX(1)F(12)Ω(2)−1

)
a
Ω

(2)
ab

(
X(2)−8iΩ(2)−1F(21)X(1)

)
b(5.4)

where Ω
(i)
ab = D2

ABδab−8iF (i)
ab , Ω(12) = 64F (12)Ω(2)−1F (21) and F

(i)
ab = i[D

(i)
a ,D

(i)
b ]+εabcD

(i)
c ,

F
(ij)
ab = i[D

(i)
a ,D

(j)
b ]. In above we have also used the identity XABOYAB = 4X

(1)
a OY

(1)
a +

4X
(2)
a OY

(2)
a and the identity

fABCDEF TrXABYCDZEF = 16εabcTrX(1)
a Y

(1)
b Z(1)

c + 16εabcTrX(2)
a Y

(2)
b Z(2)

c

. Hence by using the three dimensional notation the effective action takes the form

Γ(D) = S(D) +
1

2
Tr3TR log

(
Ω

(1)
ab + Ω

(12)
ab

)
+

1

2
Tr3TR log Ω

(2)
ab − TR logD2

AB . (5.5)

The quadratic effective action is obtained by keeping powers up to 2 in the gauge field. We

obtain the action

Γ2 = Γ
(1)
2 + Γ

(2)
2 + Γ

(1,2)
2 (5.6)

where

Γ
(i)
2 = S

(i)
2 + 2TR

1

∆

(
L(i)

a A(i)
a + A(i)

a L(i)
a + (A(i)

a )2
)

− TR
1

∆

(
L(i)

a A(i)
a + A(i)

a L(i)
a

)
1

∆

(
L(i)

a A(i)
a + A(i)

a L(i)
a

)
− TR

1

∆
F (i)

ab

1

∆
F (i)

ab

Γ
(1,2)
2 = S

(1,2)
2 − 2TR

1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a

)
1

∆

(
L(2)

a A(2)
a + A(2)

a L(2)
a

)

−2TR
1

∆
F (12)

ab

1

∆
F (21)

ab . (5.7)

The Laplacian ∆ is defined by

∆ = (L(1)
a )2 + (L(2)

a )2. (5.8)

As before L(i)
a and A(i)

a act by commutators [L
(i)
a , ..] and [A

(i)
a , ..] and L

(i)
a and A

(i)
a are

defined in terms of LAB and AAB respectively by equations similar to (3.6). Furthermore

S
(i)
2 and S

(1,2)
2 are the quadratic parts of the classical actions S(i) and S(1,2) respectively.
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In the following we will consider without any loss of generality the background config-

uration in which A
(2)
a = 0. In other words we will study the background matrices

D(1)
a = L(1)

a + A(a)
a , D(2)

a = L(2)
a . (5.9)

If it can be shown that there exists a UV-IR mixing phenomena in this case then we should

conclude immediately that there must exist a UV-IR mixing phenomena in the general

case since extension to the case A
(2)
a 6=0 is rather straightforward and trivial. The effective

action reads for this configuration

Γ2 = Γ
(1)
2 + Γ

(1,2)
2

= S
(1)
2 + S

(1,2)
2 + 2TR

1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a + (A(1)

a )2
)

−TR
1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a

)
1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a

)
− TR

1

∆
F (1)

ab

1

∆
F (1)

ab

−2TR
1

∆
F (12)

ab

1

∆
F (12)

ab . (5.10)

Remark in particular that F
(12)
ab = −i[L

(2)
b , A

(1)
a ]. Any function on fuzzy S2×S2 can be

expanded in terms of the basis

Ŷl1m1;l2m2 = Ŷl1m1 ⊗ Ŷl2m2 . (5.11)

Ŷlm are the standard SU(2) polarization tensor [23]. For example the gauge field A
(1)
a is

expanded as

A(1)
a =

∑

l1m1,l2m2

Aa(l1m1, l2m2)Ŷl1m1;l2m2 . (5.12)

The 2-point Green’s function is given by

(
1

∆

)AB,CD

=
1

(L + 1)2

∑

l1m1

∑

l2m2

(Ŷl1m1;l2m2)
AB(Ŷ+

l1m1;l2m2
)DC

[l1(l1 + 1) + l2(l2 + 1)]
(5.13)

In this formula the A,B,C and D are matrix indices ( and not SO(4) indices ) so they run

over the range 1, . . . , (L + 1)2.

The Tadpole contribution is given by

2TR
1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a

)
= −4

∑

l1m1,l2m2

TrL[L
(1)
a , Ŷ+

l1m1;l2m2
][A

(1)
a , Ŷl1m1;l2m2 ]

l1(l1 + 1) + l2(l2 + 1)

= −4
∑

k1n1,k2n2

A(1)
a (k1n1, k2n2)γa(k1n1, k2n2), (5.14)

where

γa(k1n1, k2n2) =
∑

l1m1,l2m2

TrL[L
(1)
a , Ŷ+

l1m1;l2m2
][Ŷk1n1;k2n2 , Ŷl1m1;l2m2 ]

l1(l1 + 1) + l2(l2 + 1)
. (5.15)

– 10 –



J
H
E
P
0
3
(
2
0
0
7
)
0
5
6

A short calculation ( see the appendix ) yields the result

2TR
1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a

)
= 8ĉ2

√
c2TrLΦ1 − 4ĉ2TrL(A(1)

a )2. (5.16)

In above ĉ2 is given by

ĉ2 =
2

L(L + 2)

∑

k1=1

∑

k2=0

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)
k1(k1 + 1) (5.17)

or equivalently ĉ2 = (L+1)4−1
L(L+2) = L2 + 2L + 2.

The vacuum polarization diagrams are also computed in the appendix. Let us sum-

marize the results. The 4−vertex contribution is

2TR
1

∆

(
A(1)

a

)2

= −2
∑

l1m1,l2m2

TrL[A
(1)
a , Ŷ+

l1m1;l2m2
][A

(1)
a , Ŷl1m1;l2m2 ]

l1(l1 + 1) + l2(l2 + 1)
. (5.18)

This can be computed quite easily and one finds the result

2TR
1

∆

(
A(1)

a

)2

= TrLA(1)
a O4(∆1,∆2)A

(1)
a . (5.19)

Clearly ∆1 = (L(1)
a )2 and ∆2 = (L(2)

a )2 are the Laplacians on the two spheres separately.

The opeartor O4 is defined by its eigenvalues O4(p1, p2) ( given in equation (A.16) ) on its

eigenvectors Ŷp1s1;p2s2.

Similarly the F−vertex contribution can be computed and one finds

−TR
1

∆
F (1)

ab

1

∆
F (1)

ab = −TrLF
(1)
ab OF (∆1,∆2)F

(1)
ab . (5.20)

The opeartor OF is defined by the eigenvalues OF (p1, p2) ( given in equation (A.22) ) on

the eigenvectors Ŷp1s1;p2s2 . By analogy we will have

−2TR
1

∆
F (12)

ab

1

∆
F (12)

ab = −2TrLF
(12)
ab OF (∆1,∆2)F

(12)
ab

(5.21)

Finally we need to compute the 3−vertex correction

−TR
1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a

)
1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a

)
(5.22)

This is by far the most difficult calculation. In the last part of the appendix we find that

this correction gives two different contribution to the effective action. The most important

is a canonical gauge contribution of the form

TrLL(1)
a A(1)

a O3(∆1,∆2)L(1)
b A

(1)
b (5.23)
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As before the operator O3(∆1,∆2) is defined by its eigenvalues O3(p1, p2) ( given in equa-

tion (A.35) ) on its eigenvectors Ŷp1s1;p2s2.

The other contribution in the 3−vertex correction (5.22) is of scalar-type ( in other

words it involves anticommutators between Aa and La instead of commutators ) and it was

studied in detail in [12]. See also the appendix.

Putting all the above results together we obtain ( modulo scalar-type terms ) the full

effective quadratic action in the form

Γ2 = S
(1)
2 + S

(1,2)
2 − TrLF

(1)
ab OF F

(1)
ab + TrLL(1)

a A(1)
a O3L(1)

b A
(1)
b − 2TrLF

(12)
ab OF F

(12)
ab

+ TrLA(1)
a

[
O4 − 4ĉ2

]
A(1)

a . (5.24)

We use the identity

TrLL(1)
a A(1)

a O3L(1)
b A

(1)
b =

1

2
TrLF

(1)
ab O3F

(1)
ab − 1

2
εabcTrLF

(1)
ab O3A

(1)
a − TrLA(1)

a O3∆1A
(1)
a(5.25)

Hence

Γ2 = S
(1)
2 + S

(1,2)
2 + TrLF

(1)
ab (

1

2
O3 −OF )F

(1)
ab − 1

2
εabcTrLF

(1)
ab O3A

(1)
a

− 2TrLF
(12)
ab OF F

(12)
ab + TrLA(1)

a

[
O4 −O3∆1 − 4ĉ2

]
A(1)

a . (5.26)

The eigenvalues of the operators O3,O4 and OF are given from the results of the appendix

by

Oi(k1l1; p1p2) = 4(L + 1)2
∑

k1,k2

∑

l1,l2

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)

×[1 − (−1)R+p1+p2]

×
{

p1 k1 l1
L
2

L
2

L
2

}2 {
p2 k2 l2
L
2

L
2

L
2

}2

xi(k1k2l1l2; p1p2) (5.27)

where

x3(k1k2l1l2; p1p2) = −k1(k1 + 1)
(
l1(l1 + 1) − k1(k1 + 1)

)

p2
1(p1 + 1)2

x4(k1k2l1l2; p1p2) = k1(k1 + 1) + k2(k2 + 1)

xF (k1k2l1l2; p1p2) =
1

2
. (5.28)

In the loop integrals Oi the 1 in 1− (−1)R+p1+p2 corresponds to planar diagrams while the

(−1)R+p1+p2 corresponds to non-planar diagrams as we will explain below. The quantum

number R ( not to be confused with the radius of the sphere ) is given by R = k1+k2+l1+l2.

The pair (p1, p2) represents the external momentum. The pairs (k1, k2) and (l1, l2) represent

internal momenta. The factors 2j + 1 give the volume forms ( similar to dp on the plane )

whereas 1/(j1(j1 + 1) + j2(j2 + 1)) give propagators similar to 1/p2 on the 4−dimensional

R4. The 6j symbols encode energy conservation rules. The complicated interactions of the

fuzzy photon are reflected in the 6j symbols and the coefficients xi.
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6. The UV-IR mixing in the planar limit R2 ×R2
θ

The analysis of the quadratic effective action (5.26) ( or equivalently the analysis of the

loop ”integrals” Oi ) in the fuzzy finite setting as well as in the large N = L+1 continuum

limit of ordinary S2 × S2 is very complicated. The main difficulty is that we are always

( at every step while we take this particular limit ) dealing with highly non-trivial sums.

Furthermore the last term in (5.26) is not manifestly gauge covariant and as a consequence

it will not be gauge invariant in the large N limit unless it vanishes. The non-covariance of

the terms which depend on F
(12)
ab is on the other hand only due to our choice of background

gauge field given in (5.9). Thus gauge covariance can be easily restored in these terms by

considering general gauge configurations with non-zero A
(2)
a .

The situation is much simpler in the case of one single fuzzy sphere where a delicate

cancellation between O4 and O3∆1 existed and hence we were able to maintain gauge

covariance already in the fuzzy setting.

As it turns out we can show in a straightforward way the existence of a canellation

between O4 and O3∆1 on fuzzy S2 ×S2 if we consider a different large N limit of the field

theory. As opposed to the large N ”continuum limit” of commutative S2 ×S2 we consider

instead the large N ”noncommutative planar limit” of R2 ×R2
θ with strong noncommuta-

tivity θ. In the first stage of this limit sums over the second fuzzy sphere can be converted

into integrals over the noncommutative plane which are easier for analysis in many cases.

Strong noncommutativity is crucial since it allows us to freez out all degrees of freedom

on the second fuzzy sphere except the zero mode. At the end we will take the continuum

limit of the first sphere then the usual flattening limit to obtain ordinary R2.

Thus in taking this planar limit we will treat the two spheres differently. Sums over

k2 and l2 ( the second sphere ) will be converted into integrals using the planar limit and

then calculated whereas sums over k1 and l1 ( the first sphere ) will be computed first in

closed forms ( because it is possible to do that in most cases ) then we take the continuum

and flattening limits.

From the expressions (5.26), (5.27) and (5.28) we can see that the dependence of

O4(p1, p2) −O3(p1, p2)p1(p1 + 1) on the second sphere is given by the double sum

I(k1l1; p1p2) =
∑

k2,l2

(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)
[1 − (−1)R+p1+p2]

×
{

p2 k2 l2
L
2

L
2

L
2

}2

×x(k1k2l1l2; p1p2) (6.1)

where

x(k1k2l1l2; p1p2) = − [l1(l1 + 1) + l2(l2 + 1)][l1(l1 + 1) − k1(k1 + 1) − p1(p1 + 1)]

p1(p1 + 1)

− [k2(k2 + 1) − l2(l2 + 1)][l1(l1 + 1) − k1(k1 + 1)]

2p1(p1 + 1)
. (6.2)
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Indeed the difference O4(p1, p2) −O3(p1, p2)p1(p1 + 1) reads explicitly

O4(p1, p2) −O3(p1, p2)p1(p1 + 1) = 4(L + 1)2
∑

k1,l1

(2k1 + 1)(2l1 + 1)

×
{

p1 k1 l1
L
2

L
2

L
2

}2

I(k1l1; p1p2) . (6.3)

In the planar limit we take N−→∞ and R−→∞ ( where R is the radius of the spheres )

such that θ
′

= θ/L = R2/LN ( the noncommutativity parameter ) is kept fixed. Then we

will take the limit θ
′ −→ ∞. Hence since N is very large we can replace I by the expression

I(k1l1; p1p2) =
∑

k2,l2

(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)
[1 − (−1)k1+l1+p1]

×
(Cp20

k20l2
)2

2p2 + 1

x(k1k2l1l2; p1p2)

L + 1
(6.4)

where we have used the asymptotic behaviour of the 6j symbol for very large angular

momentum N−1
2 = L

2 given by [23]2

{
p2 k2 l2
L
2

L
2

L
2

}2

=
(Cp20

k20l20)
2

(L + 1)(2p2 + 1)
+ . . . (6.5)

Since R+p1+p2 must be an odd number ( coming from [1−(−1)R+p1+p2 ] ) we can conclude

that p1 + k1 + l1 is also odd because p2 + k2 + l2 must be even from the properties of the

Clebsch-Gordan Cp20
k20l20 .

Furthermore in this large planar limit we will identify any angular momentum j2 on the

second fuzzy sphere with the corresponding linear momentum Pj2 on the noncommutative

plane by the relation j2(j2 + 1) = R2P 2
j2

= NθP 2
j2

. As a consequence all angular momenta

p2, k2 and l2 on the second fuzzy sphere can be assumed in this planar limit to be very

large compared to 1. Quantum numbers on the first fuzzy sphere are defined by a similar

formula j1(j1 + 1) = R2P 2
j1

.

Since we will take the planar limit of the second fuzzy sphere in such a way that we will

have a strong noncommutativity parameter while we will take the continuum limit ( then

the ordinary flattening limit ) of the first fuzzy sphere, we need to manipulate momenta

on the two spheres differently. In the first stage we will fix the first fuzzy sphere ( in

other words we will fix the planar momenta Pj1 ) so the effect of the limit on this sphere

can be undone at the end while on the other hand because 0≤P 2
j2
≤1/θ

′

we can see that

planar momenta Pj2 on the second fuzzy sphere approach 0 as 1/
√

θ′ which will simplify

our integrals considerably. In the second stage we will take the continuum limit of the first

fuzzy sphere then the ordinary flattening limit so we end up with R2 × R2
θ. We will also

comment in the next section on the noncommutative planar limit of the first fuzzy sphere

in which we end up instead with the space R2
θ × R2

θ.

2Note that compared with [23] the leading behaviour of the 6j symbol is taken here to be proportional

to 1/(L + 1) instead of 1/L for convenience. This difference is clearly unimportant in the large N limit.

– 14 –



J
H
E
P
0
3
(
2
0
0
7
)
0
5
6

All angular momenta p2, k2 and l2 on the second fuzzy sphere are very large compared

to 1 and thus we can approximate the square of the Clebsch-Gordan Cp20
k20l20

3 by [23]

(Cp20
k20l20)

2

2p2 + 1
' 1

π

1√
−k4

2 − l42 − p4
2 + 2k2

2l
2
2 + 2k2

2p
2
2 + 2l22p

2
2

. (6.6)

Let us also remark that from the properties of the Clebsch-Gordan coefficients we know

that l2 must be in the range k2 − p2≤l2≤k2 + p2. Hence the sum over l2 in I with x equal

to the first term in (6.2) will be given by the integral

k2+p2∑

k2−p2

2l2 + 1√
−k4

2 − l42 − p4
2 + 2k2

2l
2
2 + 2k2

2p
2
2 + 2l22p

2
2

=

∫ k2+p2

k2−p2

d[l2(l2 + 1)]√
[l22 − (k2 + p2)2][(k2 − p2)2 − l22]

=

∫ (Pk2
+Pp2 )2

(Pk2
−Pp2)2

dP 2
l2√

[P 2
l2
− (Pk2 + Pp2)

2][(Pk2 − Pp2)
2 − P 2

l2
]

=

∫ 4Pk2
Pp2

0

dx√
x(4Pk2Pl2 − x)

= π. (6.7)

In above we have used j =
√

θNPj + . . . with corretions which go to 0 with N−→∞. This

result is independent of k2 and hence the extra sum over k2 in I will lead to

π
L∑

k2=0

2k2 + 1

k2(k2 + 1) + k1(k1 + 1)
= π

∫ 1

θ
′

0

dP 2
k2

P 2
k2

+ P 2
k1

= π

∫ 1

0

dy

y + θ′P 2
k1

. (6.8)

Let us recall that 0≤θ
′

P 2
k2
≤1 from which we see that the range of Pk2 shrinks to 0 and

hence the integral is dominated in this limit by the value P 2
k2

= 0. The above sum ( which is

proportional to the contribution to I coming from setting x equal to the first term in (6.2)

) is equal

π

L∑

k2=0

2k2 + 1

k2(k2 + 1) + k1(k1 + 1)
=

π

θ′P 2
k1

+ . . . (6.9)

In this equation we have also used the limit θ
′−→∞ keeping Pk1 fixed. Finally we

need to multiply this result by the factor −
(
k1(k1 + 1) − l1(l1 + 1) − p1(p1 + 1)

)
(1 −

(−1)k1+l1+p1)/(πNp1(p1 + 1)) in accordance with equation (6.4) to get the full contribu-

tion to I coming from setting x equal to the first term in (6.2) .

In this strong noncommutativity planar limit of the second fuzzy sphere the UV and

IR regimes on the corresponding noncommutative plane are one and the same if we choose

3This is the probability to couple the angluar momenta k2 and l2 with projections equal 0 to give the

angular momentum p2 with projection equal 0.
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not to use dimensionless variables. The UV regime should thus be defined by the momenta

which are such that θ
′

P 2
k2
−→1 whereas the IR regime should be defined by the momenta

for which θ
′

P 2
k2
−→0 otherwise there will be no distinction between these two regions.

Everything is measured here in terms of the noncommutativity parameter θ
′

.

The sum over l2 in I with x equal to the second term in (6.2) will lead on the other

hand to a vanishingly small contribution in the limit. Indeed this sum is given by the

integral

1

2

∫ k2+p2

k2−p2

d[l2(l2 + 1)]√
[l22 − (k2 + p2)2][(k2 − p2)2 − l22]

k2(k2 + 1) − l2(l2 + 1)

l1(l1 + 1) + l2(l2 + 1)
=

−π

2
+

P 2
l1

+ P 2
k2

2

∫ +1

−1

dx√
1 − x2

1

P 2
l1

+ P 2
k2

+ P 2
p2

− 2Pk2Pp2x
. (6.10)

The sum over k2 is given by the integral

L∑

k2=0

2k2 + 1

k2(k2 + 1) + k1(k1 + 1)
f(P 2

k2
) =

∫ 1

θ
′

0

dP 2
k2

P 2
k2

+ P 2
k1

f(P 2
k2

) =

∫ 1

0

dy

y + θ′P 2
k1

f(
y

θ′
).(6.11)

The function f from (6.10) is

f(
y

θ′
) = −π

2
+

θ
′

P 2
l1

+ y

2

∫ +1

−1

dx√
1 − x2

1

θ′P 2
l1

+ y + θ′P 2
p2

− 2
√

yθ′Pp2x

= −π

2

P 2
p2

P 2
l1

+ P 2
p2

= −π

2

P 2
p2

P 2
l1

+ . . . (6.12)

In above we have used again the limit θ
′−→∞ then we used the fact that the momentum

Pk1 on the first fuzzy sphere is fixed wehereas the momentum Pp2 on the second fuzzy

sphere is such that 0≤P 2
p2
≤1/θ

′

and thus it goes to zero as 1/
√

θ
′

. We obatin then

equation (6.10) = −π

2

1

θ′P 2
k1

P 2
p2

P 2
l1

. (6.13)

We can check that this yields zero contribution to I because of the factor l1(l1+1)−k1(k1+1)

in the second line of (6.2). This is expected since for l2 = k2 ( which is the value which

dominates the sum over l2 ) the second term in (6.2) is zero. This is also expected from

the fact that if we set p2 = 0 then we must have l2 = k2 and hence the second term in (6.2)

vanishes.

Therefore the sum I will be dominated in this limit by the part with x equal to the

first term in (6.2) which is given by equation (6.9) × −
(
k1(k1 + 1) − l1(l1 + 1) − p1(p1 +

1)
)
(1 − (−1)k1+l1+p1)/(Nπp1(p1 + 1)) in accordance with equation (6.4). This yields the

difference

O4(p1, p2) −O3(p1, p2)p1(p1 + 1) = −4L(L + 1)2
∑

k1,l1

(2k1 + 1)(2l1 + 1)

k1(k1 + 1)
[1 − (−1)k1+l1+p1]
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×
{

p1 k1 l1
L
2

L
2

L
2

}2
l1(l1 + 1) − k1(k1 + 1) − p1(p1 + 1)

p1(p1 + 1)

(6.14)

By using the result of [12] we can do the remaining sums over k1 and l1 to obtain

O4(p1, p2) −O3(p1, p2)p1(p1 + 1) = 8L(L + 1). (6.15)

Similarly we can compute the double sum (5.17) in this planar limit by first converting the

sum over k2 into an integral and then performing the sum over k1. The result is as follows

−4ĉ2 = −8L(L + 1). (6.16)

Therefore we see that in this limit

O4(p1, p2) −O3(p1, p2)p1(p1 + 1) − 4ĉ2 = 0. (6.17)

The effective action in this noncommutative planar limit on noncommutative S2
N × R2

θ (

the first sphere is still fuzzy ) becomes manifestly gauge-covariant given by

Γ2 = S
(1)
2 + S

(1,2)
2 + TrLF

(1)
ab

[
1

2

O4

∆1
− 4L(L + 1)

∆1
−OF

]
F

(1)
ab − εabcTrLF

(1)
ab

×
[
1

2

O4

∆1
− 4L(L + 1)

∆1

]
A(1)

a − 2TrLF
(12)
ab OF F

(12)
ab . (6.18)

For completeness let us also discuss what happens to OF in this noncommutative planar

limit of the second fuzzy sphere. The relevant integral over k2 and l2 is given in this case

by

IF (k1l1; p1p2) =
1

2πN2θ
[1 − (−1)k1+l1+p1]

∫ 1

θ
′

0

dP 2
k2

P 2
k2

+ P 2
k1

×
∫ +1

−1

dx√
1 − x2

1

P 2
l1

+ P 2
k2

+ P 2
p2

− 2Pk2PP2x

=
L

2N2θ2
[1 − (−1)k1+l1+p1]

1

(P 2
k1

)(P 2
l1

+ P 2
p2

)
+ . . .

=
L

2
[1 − (−1)k1+l1+p1]

1

k1(k1 + 1)l1(l1 + 1)
+ . . . (6.19)

In above we have again neglected corrections proportional to the external momentum Pp2

since it goes to 0 in this limit as 1/
√

θ′. The remaining sums over k1 and l1 are done in [12]

where we found the result OF−→0 in the continuum limit of the ordinary sphere. Hence

the effective action becomes on noncommutative S2 × R2
θ given by

Γ2 = S
(1)
2 + S

(1,2)
2 + TrLF

(1)
ab

[
1

2

O4

∆1
− 4L(L + 1)

∆1

]
F

(1)
ab − εabcTrLF

(1)
ab
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×
[
1

2

O4

∆1
− 4L(L + 1)

∆1

]
A(1)

a . (6.20)

The two quantum contributions ( the second and third terms ) are non-zero gauge invariant

corrections to the classical action which shows that the quantum theory of U(1) fields on

noncommutative S2×R2
θ is a non-trivial theory as opposed to the quantum theory of U(1)

fields on commutative S2 × R2 which is trivial. This indicates the presence of a UV-IR

mixing phenomena in this model.

Finally we need to compute O4 by converting the sums over k2 and l2 into integrals

using the large θ
′

limit, then performing the remaining sums over k1 and l1. In this case

we have

I4(k1l1; p1p2) =
1

πN
[1 − (−1)k1+l1+p1]

∫ 1

θ
′

0
dP 2

k2

∫ +1

−1

dx√
1 − x2

1

P 2
l1

+ P 2
k2

+ P 2
p2

− 2Pk2PP2x

= [1 − (−1)k1+l1+p1]
L

l1(l1 + 1)
+ . . . (6.21)

Again we have neglected subleading corrections which are proportional to Pp2. Finally

performing the sums over k1 and l1 yields the answer

1

2

O4

∆1
(p1, p2) −

4L(L + 1)

∆1
=

4L(L + 1)

p1(p1 + 1)

p1∑

k=2

1

k
. (6.22)

The flattening limit of the above action is straightforward and we can immediately conclude

that the U(1) theory on noncommutative R2 ×R2
θ is non-trivial as opposed to U(1) theory

on R2 × R2.

7. The beta function and the planar limit R2
θ × R2

θ

Let us explain the point about the UV-IR mixing further by taking the planar limit of

the first fuzzy sphere in computing the operator O4 so we end up with R2
θ × R2

θ instead.

Modulo the terms involving OF ( which need to be recalculated ) the above action (6.20) is

still valid in this different limit. Now from the other expression of O4 found in the appendix

we have

O4(p1, p2) = 4
∑

k1,k2

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

[
1 − (−1)k1+k2+p1+p2(L + 1)2 ×

{
p1

L
2

L
2

k1
L
2

L
2

} {
p2

L
2

L
2

k2
L
2

L
2

}]
. (7.1)

The first term inside the bracket results from performing the sum over l1 and l2 in (5.27)

with [1− (−1)R+p1+p2] replaced with 1; this is the planar contribution to the diagram. The

second term in the above formula results on the other hand from performing the sum with

[1 − (−1)R+p1+p2] replaced with −(−1)R+p1+p2; this is the nonplanar contribution. In the

commutative these two contributions are equal and hence they cancel each other.
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As it turns out we can use in the large L limit ( for p1, p2 << L
2 and 0≤k1, k2≤L ) the

same approximation used in [13], namely

{
p1

L
2

L
2

k1
L
2

L
2

}
'(−1)L+p1+k1

L + 1
Pp1(1 − 2k2

1

L2
) ,

{
p2

L
2

L
2

k2
L
2

L
2

}
'(−1)L+p2+k2

L + 1
Pp2(1 − 2k2

2

L2
)(7.2)

To obtain

O4(p1, p2) = 4

∫ 1

θ
′

0

dP 2
k1

dP 2
k2

P 2
k1

+ P 2
k2

[
1 − Pp1

(
1 − 2θ

L
P 2

k1

)
Pp2

(
1 − 2θ

L
P 2

k2

)]
. (7.3)

Pp are the Legendre polynomials. For p1 >> 1 and θ
′

P 2
k1

<< 1 we can also use the

approximations used in [13], viz

Pp1

(
1 − 2θ

L
P 2

k1

)
= J0(2θPp1Pk1) + . . . =

∫
dφ1

2π
e2iθPp1Pk1

cos φ1 . (7.4)

By rotational invariance we have θPµ
p1BµνP

ν
k1

= θPp1(Pk1cosφ1) ( with B12 = −1 ) where

we have chosen the 2−dimensional external momentum Pp1 to lie in the y−direction and

φ1 is the angle between the internal momentum ~Pk1 and the x−axis. Thus we obatin (

with d2Pk1 = Pk1dPk1dφ1 and d2Pk2 = Pk2dPk2dφ2)

O4(p1, p2) =
4

π2

∫ L
θ

0

d2Pk1d
2Pk2

P 2
k1

+ P 2
k2

[
1 − e2iθ[Pp1BPk1

+Pp2BPk2
]

]
. (7.5)

The second term is precisley the canonical non-planar 2-point function on noncommutative

R4
θ with Euclidean metric R2

θ ×R2
θ whereas the first term is the planar contribution. Two

important remarks are now in order. 1) The external legs of this 2-point function are two

curvature tensors F
(1)
ab for the third term of (6.20) and one curvature tensor F

(1)
ab and one

gauge field εabcA
(1)
c for the fourth term of (6.20). 2) These contributions are not necessarily

identical to what we usually obtain on noncommutative R4
θ. This is not surprising since

we obtained this noncommutative R4
θ in a very special way by scaling fuzzy S2 × S2. The

scaled commutation relations can be checked to be those of noncommutative R4
θ. The

structure of the phases indicates also that we are indeed dealing with a noncommutative

R4
θ. Comparing (7.5) with the first equation of section 4.D of [8] we can see that (7.5)

corresponds to the second term of that equation which is proportional to the metric ηij .

The above integral shows a divergence at zero momentum. This is only an artifact of

the approximation used above. The regularized value of O4 is given by (6.22). If we take

the planar limit of the first fuzzy sphere by rewriting this result as

1

2

O4

∆1
(p1, p2) −

4L(L + 1)

∆1
=

4

θ
′

P 2
p1

ln
R|Pp1|

2
. (7.6)

Then We recover the usual logarithmic divergence when R−→0 ( i.e θ
′−→0 ) or equivalently

Pp1−→0.
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The renormalized U(1) gauge coupling constant g2(P ) ( which is obviously momentum

dependent ) can be easily read from the above discussion. We obatin immediately the

formula

1

4g2(P )
=

1

4g2
+

2

θ
′

P 2
ln

R2P 2

4
. (7.7)

P is the momentum on the first NC plane R2
θ which is in the range 0≤θ

′

P 2≤1. Looking

at high momenta µ2 in the UV region near the cut-off 1/θ
′

we can see that 2
θ
′
P 2

ln R2P 2

4 is

approximated by 2 ln R2P 2

4 and hence in this regime the above formula reduces to

1

4g2(µ)
=

1

4g2
+ 2 ln

R2µ2

4
(7.8)

or equivalently

µ
∂g(µ)

∂µ
= −8g3(µ) (7.9)

This is ( upto a multiplicative factor ) the same beta function derived for noncommutative

U(1) gauge theory in [24, 7]. The most important things are the negative sign and the cube

power which come naturally out of the model. Thus the strong noncommutativity limit

considered in this note captures already most of the essential feature of noncommutative

U(1) gauge theory on R4
θ. This also shows explicitly how large N fuzzy S2 × S2 acts as a

regulator of noncommutative R4
θ.

Restoring SO(4) covariance is straightforward. We only need to consider a background

gauge configuration with both A
(1)
a and A

(2)
a non-zero. There will be extra terms to be

computed in the effective action but fortunately all of them ( even those which mixe A
(1)
a

and A
(2)
a ) are of the same strucutre as those already considered in this article. See the

effective action (5.7) . Their analysis will be therefore easy and there will no additional

physics to be learned from this calculation.

The last point is with regard to the mass terms in the original model (3.2). In two

dimensions the presence of such terms with m−→∞ causes the UV-IR mixing to disappear.

Loosely speaking this can be traced to the dimensionality of the space. As we have already

explained the effect of these terms in the large mass limit is only to project out the scalar

normal components from the theory and hence effectively reduce the three dimensional

trace in 1
2Tr3TR log Ω to a two dimensional trace. Taking also the ghost contribution

−TR logD2 into account we see that the effective action will only consist in terms depending

on the curvature which as we have shown in [12] go to zero in the limit anyway. This

scenario does not happen here in 4 dimensions for the obvious reason that we have in this

case the gauge contribution 1
2Tr6TR log Ω while the ghost contribution does not change

and it is still given formally by −TR logD2 . See equation (5.1). Thus with the presence

of the mass terms ( even if we let the mass goes to infinity ) we expect the UV-IR mixing

to persist in 4 dimensions as opposed to 2 dimensions.
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8. Effective potential on S2 × S2 and topology change

Let us redo the calculation of the effective potential on fuzzy S2 × S2 done originally in

the first reference of [5]. In here we will also consider the case when the two spheres have

different radii and hence the configurations of interest are given by

D(1)
a = φ1L

(1)
a , D(2)

a = φ2L
(2)
a . (8.1)

The starting point is the effective action (5.1) with ξ = 1 and m small. After some

calculation we can show that the value of the effective action in these configurations is

given by

Veff(φ1, φ2) = Γ
(
φ1L

(1)
a , φ2L

(2)
a

)
=

L(L + 2)

2g2

[
1

4
φ4

1 −
1

3
φ3

1 +
m2

4
(φ2

1 − 1)2]

+
L(L + 2)

2g2

[
1

4
φ4

2 −
1

3
φ3

2 +
m2

4
(φ2

2 − 1)2]

+ 2TR log

[
φ2

1(L(1)
a )2 + φ2

2(L(2)
a )2

]
+ . . . . (8.2)

The only interaction between the two spheres is in the quantum contribution.

There are several possibilities to be considered here. First of all if we insist on the full

SO(4) rotational invariance then we must set φ1 = φ2 ≡ φ. In this case we can compute

that the above potential will admit a stable minimum ( in other words a solution φ to the

equation of motion wille exist ) for all values of g2 which are less than the critical value (

see the first reference of [5] )

g2
∗L

2|1 =
m2 +

√
2 − 1

16
. (8.3)

Below this value we have φ'1 ( ”the fuzzy S2 × S2 phase ”) whereas above this value we

have φ−→0 ( ”the matrix phase” ). In the fuzzy S2 × S2 phase the field theory is a U(1)

gauge theory at least in the very weak coupling region. We suspect that the gauge group

structure inside the fuzzy S2 × S2 phase will change at some point ( which means another

phase transition ) from U(1) to U((L+1)2) in analogy to what happened on a single fuzzy

sphere where the gauge group changed from U(1) to U(L+1) inside the fuzzy sphere phase.

Indeed the dynamics inside the matrix phase is given by a U((L + 1)2) gauge theory on

a point so the expectation that the gauge group will change inside the fuzzy S2 × S2 at

some coupling before we reach the matrix phase is natural. The most important point in

all this physics is the topology change S2 × S2−→{0} which seems to be related to the

UV-IR mixing phenomena.

But there is more. If we do not insist on SO(4) rotational invariance then we can

consider the configurations with φ1 = 1 and φ2 ≡ φ ( or the other way around ). Then

similarly to above we can compute that the potential will admit a stable minimum for all

values of g2 which are less than the critical value

g2
∗L

2|2 =
m2 +

√
2 − 1

32
. (8.4)

– 21 –



J
H
E
P
0
3
(
2
0
0
7
)
0
5
6

This is half the original value g2
∗L

2|1. Below this value we have again ”the fuzzy S2 × S2

phase ” where φ'1 whereas above this value we have φ−→0 which is now a ”fuzzy S2 phase

”. The topology change here is seen to be S2 × S2−→S2.

Putting the two facts together we have the following picture. For values of g below g∗|2
we have a fuzzy S2 × S2 while for values of g between g∗|2 and g∗|1 we have a single fuzzy

sphere and for values of g above g∗|1 we have a single point. Thus the topology change

obtained in this model is S2 × S2−→S2−→{0}. Remark that the critical values become

large for large values of the mass m which makes the transitions and as a consequence the

topology change harder to reach from small couplings.

9. Conclusion

In this article we have calculated the one-loop quantum correction of U(1) gauge fields on

fuzzy S2×S2. In the large N planar limit we have shown the existence of a gauge invariant

UV-IR mixing. We have also computed the beta function. In the strong noncommutativity

limit considered here most of the essensial features of noncommutative U(1) gauge theory

on the Moyal-Weyl R4
θ emerged. In this sense we have explicitly shown that large N fuzzy

S2 × S2 can be used as regulator of gauge theory on R4
θ.

In this model we have also shown from the computation of the effective potential the

existence of ( first order) phase transitions 1) from fuzzy S2 × S2 to S2 and then from S2

to a single point ( matrix phase ) or 2) directly from fuzzy S2 ×S2 to a matrix phase. This

last transition is also rotationally invariant. We argued that this topology change is related

to the perturbative UV-IR mixing. This picture seems to be consistent in 2 dimensions.

The transitions can be removed if we take the mass of the normal scalar fields to infinity

however the UV-IR mixing in this case ( as opposed to 2 dimensions ) persists.

Since one of our main goal is to have a nonperturbative regularization of U(1) gauge

theory in 4 dimensions we must find a way to get rid of ( or at least understand better )

the UV-IR mixing and the matrix phases. The inclusion of fermions in this model is a very

important issue since it would give us a nonperturbative approach to QED ( or QCD for

higher gauge groups ). We also think that adding fermions will remove to a large extent

the topology change observed in this model. Fuzzy perturbation theory involving fermions

will be reported hopefully soon [11].
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A. Fuzzy perturbation theory

The tadpole diagram We will use the following identities

Ŷ+
l1m1;l2m2

= (−1)m1+m2Ŷl1−m1;l2−m2 ,

TrL (Ŷk1n1;k2n2Ŷ+
l1m1;l2m2

) = δk1l1δk2l2δn1m1δn2m2 (A.1)

[Ŷk1n1;k2n2, Ŷl1m1;l2m2 ] =
∑

l3m3

∑

l
′

3m
′

3

Ω
l3m3l

′

3m
′

3
k1n1k2n2;l1m1l2m2

Ŷ
l3m3;l

′

3m
′

3

= (L + 1)
√

(2l1 + 1)(2l2 + 1)(2k1 + 1)(2k2 + 1)

×
∑

l3m3

∑

l′3m
′

3

(−1)l3+l′3 [1 − (−1)R+l3+l′3 ]

{
k1 l1 l3
L
2

L
2

L
2

} {
k2 l2 l′3
L
2

L
2

L
2

}

×C l3 m3
k1n1 l1m1

C
l′3 m′

3
k2n2 l2m2

Ŷl3m3;l′3m′

3

R = k1 + l1 + k2 + l2, (A.2)

and

[L(1)
µ , Ŷl1m1;l2m2 ] =

√
l1(l1 + 1) C l1 m1+µ

l1m1 1µ Ŷl1m1+µ;l2m2 . (A.3)

A straightforward calculation yields

γa(k1n1, k2n2) = ηµ
a (−1)µ

∑

l1m1,l2m2

√
l1(l1 + 1)

l1(l1 + 1) + l2(l2 + 1)
C l1−m1+µ

l1−m1,1µΩl1m1−µl2m2

k1n1k2n2;l1m1l2m2
.(A.4)

The coefficients ηµ
a satisfy ηµ

aην
a = (−1)µδµ+ν,0, a = 1, 2, 3, µ = 0,+1,−1. The sums over

m1 and m2 can be done using the identities

∑

m1

C l1−m1+µ
l1−m11µ C l1m1−µ

k1n1l1m1
=

2l1 + 1

3
δk11δn1,−µ ,

∑

m2

C l2m2
k2n2l2m2

= (2l2 + 1)δk20δn20. (A.5)

We find

γa(k1n1, k2n2) =
1

3
ηµ

a (−1)µδk1,1δk2,0δn1,−µδn2,0

∑

l1,l2

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)

√
l1(l1 + 1)ωl1l2 ,(A.6)

where

ωl1l2 = 2(L + 1)
√

3(2l1 + 1)(2l2 + 1)(−1)l1+l2

{
1 l1 l1
L
2

L
2

L
2

} {
0 l2 l2
L
2

L
2

L
2

}

= −2
√

3

√
l1(l1 + 1)√
L(L + 2)

, (A.7)

where we have used the two 6j symbols
{

1 l1 l1
L
2

L
2

L
2

}
=

(−1)L+l1+1
√

l1(l1 + 1)√
L(L + 1)(L + 2)(2l1 + 1)

,

{
0 l2 l2
L
2

L
2

L
2

}
=

(−1)L+l2

√
(L + 1)(2l2 + 1)

. (A.8)
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Hence

γa(k1n1, k2n2) = − 2√
3L(L + 2)

ηµ
a (−1)µδk1,1δk2,0δn1,−µδn2,0

×
L∑

l1=1

L∑

l2=0

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)
l1(l1 + 1)

= − (L + 1)4 − 1√
3L(L + 2)

ηµ
a (−1)µδk1,1δk2,0δn1,−µδn2,0. (A.9)

The Tadpole diagram is therefore given by

2TR
1

∆

(
L(1)

a A(1)
a + A(1)

a L(1)
a

)
= 4

(L + 1)4 − 1√
3L(L + 2)

A
(1)
−µ(1 − µ, 00)

= 8
(L + 1)4 − 1

L(L + 2)
TrLA(1)

a L(1)
a

= 8
(L + 1)4 − 1

L(L + 2)

√
c2TrLΦ1 − 4

(L + 1)4 − 1

L(L + 2)
TrL(A(1)

a )2.

(A.10)

The 4−vertex correction We can immediately compute

∑

m1,m2

(−1)m1+m2TrL[Ŷ
k
′

1n
′

1;k
′

2n
′

2
, Ŷl1−m1;l2−m2 ][Ŷk1n1;k2n2 , Ŷl1m1;l2m2 ] =

∑

l3,l
′

3

∑

m1,m2

(−1)m1+m2
∑

m3,m
′

3

(−1)m3+m
′

3Ω
l3m3l

′

3m
′

3

k
′

1n
′

1k
′

2n
′

2,l1−m1l2−m2
Ω

l3−m3l
′

3−m
′

3
k1n1k2n2,l1m1l2m2

.(A.11)

The sums over m1,m2,m
′

3 and m
′

3 can be done using the identity

∑

m1m2

(−1)m1+m2C l2m2
p1n1l1−m1

C l2−m2
p2n2l1m1

=

=
2l2 + 1√

(2p1 + 1)(2p2 + 1)
(−1)n1(−1)l1+l2+p1δp1p2δn1,−n2 . (A.12)

We obtain ( with δkk
′ = (−1)n1+n2δ

k1k
′

1
δ
k2k

′

2
δ
n1,−n

′

1
δ
n2,−n

′

2
and R = l1 + l2 + k1 + k2)

−2(L + 1)2(2l1 + 1)(2l2 + 1)δkk
′

∑

l3,l
′

3

(2l3 + 1)(2l
′

3 + 1)(1 − (−1)R+l3+l
′

3)

{
k1 l1 l3
L
2

L
2

L
2

}2

×

{
k2 l2 l

′

3
L
2

L
2

L
2

}2

(A.13)

or equivalently ( by using identities 5.2 and 5.3 of [12] )

−2(L + 1)2(2l1 + 1)(2l2 + 1)δkk
′

[
1

(L + 1)2
− (−1)R

{
k1

L
2

L
2

l1
L
2

L
2

} {
k2

L
2

L
2

l2
L
2

L
2

} ]
. (A.14)
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The 4−vertex correction is therefore given by

∑

p1s1,p2s2

(−1)s1+s2A(1)
a (p1s1, p2s2)A

(1)
a (p1 − s1, p2 − s2)O4(p1, p2) (A.15)

where

O4(p1, p2) = 4
∑

k1,k2

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

×
[
1 − (−1)k1+k2+p1+p2(L + 1)2

{
p1

L
2

L
2

k1
L
2

L
2

}{
p2

L
2

L
2

k2
L
2

L
2

}]

= 4(L + 1)2
∑

k1,k2

∑

l1,l2

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)

×[1 − (−1)R+p1+p2]

×
{

p1 k1 l1
L
2

L
2

L
2

}2 {
p2 k2 l2
L
2

L
2

L
2

}2 (
l1(l1 + 1) + l2(l2 + 1)

)
. (A.16)

The F−vertex contribution The 3-vertex correction corresponding to the curvature

F
(1)
ab is given by

TR
1

∆
F (1)

ab

1

∆
F (1)

ab =

∑

k

∑

l

TrLF
(1)
ab [Ŷk1n1;k2n2 , Ŷ+

l1m1;l2m2
]TrLF

(1)
ab [Ŷl1m1;l2m2 , Ŷ+

k1n1;k2n2
]

[k1(k1 + 1) + k2(k2 + 1)][l1(l1 + 1) + l2(l2 + 1)]
. (A.17)

In above the notation is k = (k1n1, k2n2), l = (l1m1, l2m2). We need to compute

∑

n1,n2

∑

m1,m2

(−1)n1+n2+m1+m2

×TrLŶp1s1;p2s2 [Ŷk1n1;k2n2 , Ŷl1−m1;l2−m2 ]TrLŶq1t1;q2t2 [Ŷl1m1;l2m2 , Ŷk1−n1;k2−n2]

[k1(k1 + 1) + k2(k2 + 1)][l1(l1 + 1) + l2(l2 + 1)]
=

∑

n1,n2

∑

m1,m2

(−1)n1+n2+m1+m2
(−1)s1+s2+t1+t2Ωp1−s1p2−s2

k1n1k2n2;l1−m1l2−m2
Ωq1−t1q2−t2

l1m1l2m2;k1−n1k2−n2

[k1(k1 + 1) + k2(k2 + 1)][l1(l1 + 1) + l2(l2 + 1)]
.

(A.18)

By observing that Ωp1−s1p2−s2

k1n1k2n2;l1−m1l2−m2
= Ω̃p1p2

k1k2;l1l2
Cp1−s1

k1n1l1−m1
Cp2−s2

k2n2l2−m2
, etc with an ob-

vious definition for Ω̃ and then using the identity

∑

n1,m1

Cp1−s1

k1n1l1−m1
Cq1−t1

l1m1k1−n1
(−1)n1+m1 = (−1)t1δq1p1δt1,−s1 (A.19)

we obtain

δqp

Ω̃p1p2

k1k2;l1l2
Ω̃p1p2

l1l2;k1k2

[k1(k1 + 1) + k2(k2 + 1)][l1(l1 + 1) + l2(l2 + 1)]
= 2(L + 1)2δqp
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× (2k1 + 1)(2k2 + 1)(2l1 + 1)(2l2 + 1)

[k1(k1 + 1) + k2(k2 + 1)][l1(l1 + 1) + l2(l2 + 1)]
[1 − (−1)R+p1+p2]

×
{

k1 l1 p1
L
2

L
2

L
2

}2 {
k2 l2 p2
L
2

L
2

L
2

}2

(A.20)

Hence the F -vertex correction is equal to

TR
1

∆
F (1)

ab

1

∆
F (1)

ab =
∑

p1s1p2s2

(−1)s1+s2F
(1)
ab (p1s1p2s2)F

(1)
ab (p1 − s1p2 − s2)OF (p1, p2),

(A.21)

where

OF (p1, p2) = 2(L + 1)2
∑

k1,k2

∑

l1,l2

(2k1 + 1)(2k2 + 1)(2l1 + 1)(2l2 + 1)

[k1(k1 + 1) + k2(k2 + 1)][l1(l1 + 1) + l2(l2 + 1)]

× [1 − (−1)R+p1+p2]

{
k1 l1 p1
L
2

L
2

L
2

}2 {
k2 l2 p2
L
2

L
2

L
2

}2

. (A.22)

The 3−vertex correction This is given by

TR
1

∆

„

L
(1)
a A

(1)
a + A

(1)
a L

(1)
a

«

1

∆

„

L
(1)
a A

(1)
a + A

(1)
a L

(1)
a

«

=

2
X

k1n1,k2n2

X

l1m1,l2m2

(−1)µ+ν
TrL[L

(1)
µ , Ŷk1n1;k2n2

][A
(1)
−µ, Ŷ+

l1m1;l2m2
]TrL[L

(1)
ν , Ŷl1m1;l2m2

][A
(1)
−ν , Ŷ+

k1n1;k2n2
]

[k1(k1+1) + k2(k2+1)][l1(l1+1)+l2(l2 + 1)]
+

2
X

k1n1,k2n2

X

l1m1,l2m2

(−1)µ+ν
TrL[L

(1)
µ , Ŷk1n1;k2n2

][A
(1)
−µ, Ŷ+

l1m1;l2m2
]TrL[A

(1)
−ν , Ŷl1m1;l2m2

][L
(1)
ν , Ŷ+

k1n1;k2n2
]

[k1(k1 + 1) + k2(k2 + 1)][l1(l1 + 1) + l2(l2 + 1)]
.

(A.23)

We compute

(−1)µTrL[L(1)
µ , Ŷk1n1;k2n2][A

(1)
−µ, Ŷ+

l1m1;l2m2
]

=
∑

p1s1,p2s2

A
(1)
−µ(p1s1p2s2)(−1)m1+m2(−1)n1+n2

√
k1(k1 + 1)

×Ω̃k1k2
p1p2,l1l2

Ck1n1+µ
k1n11µ Ck1−n1−µ

p1s1l1−m1
Ck2−n2

p2s2l2−m2

(−1)νTrL[L(1)
ν , Ŷl1m1;l2m2 ][A

(1)
−ν , Ŷ+

k1n1;k2n2
]

=
∑

q1t1,q2t2

A
(1)
−ν(q1t1q2t2)(−1)m1+m2(−1)n1+n2

√
l1(l1 + 1)

×Ω̃l1l2
q1q2,k1k2

C l1m1+ν
l1m11ν C l1−m1−ν

q1t1k1−n1
C l2−m2

q2t2k2−n2
(A.24)

and

(−1)νTrL[A
(1)
−ν , Ŷl1m1;l2m2 ][L

(1)
ν , Ŷ+

k1n1;k2n2
]
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=
∑

q1t1,q2t2

A
(1)
−ν(q1t1q2t2)

√
k1(k1 + 1)Ω̃k1k2

q1q2,l1l2
Ck1−n1+ν

k1−n11ν Ck1n1−ν
q1t1l1m1

×Ck2n2
q2t2l2m2

. (A.25)

The sum over n2 and m2 can be done using the identity

∑

n2,m2

Ck2−n2
p2s2l2−m2

C l2−m2
q2t2k2−n2

=

√
(2k2 + 1)(2l2 + 1)

2p2 + 1
(−1)k2+l2+s2δq2p2δt2,−s2 (A.26)

whereas the sum over n1 and m1 can be done using
∑

n1,m1

Ck1n1+µ
k1n11µ Ck1−n1−µ

p1s1l1−m1
C l1m1+ν

l1m11ν C l1−m1−ν
q1t1k1−n1

=

√
(2k1 + 1)(2l1 + 1)(−1)k1+l1+t1+µf1(k1l1p1s1q1t1;µ, ν)√

k1(k1 + 1)l1(l1 + 1)(2p1 + 1)(2q1 + 1)
(A.27)

where f1 is the function which appears in the single fuzzy sphere case in equation (C.9)

of [12]. Explicitly it is given by

f1(k1l1p1s1q1t1;µ, ν)

=
√

k1(k1 + 1)l1(l1 + 1)(2p1 + 1)(2q1 + 1)(2k1 + 1)(2l1 + 1)
∑

km

Ckm
p1s11µCk−m

q1t11ν

×
{

l1 k1 p1

1 k k1

}{
k1 l1 q1

1 k l1

}
. (A.28)

The first term of (A.23) becomes

2(L + 1)2
∑

p1s1,p2s2

∑

q1t1

A
(1)
−µ(p1s1p2s2)A

(1)
−ν(q1t1p2 − s2)(−1)s1+s2+ν ×

∑

k1,k2

∑

l1,l2

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)

×[1 − (−1)R+p1+p2][1 − (−1)R+q1+p2]

×
{

p1 k1 l1
L
2

L
2

L
2

}{
q1 k1 l1
L
2

L
2

L
2

}{
p2 k2 l2
L
2

L
2

L
2

}2

f1(k1l1p1s1q1t1;µ, ν). (A.29)

Next we compute the second term of (A.23). The sum over n1 and m1 will now be done

using the identity
∑

n1,m1

(−1)n1+m1Ck1n1+µ
k1n11µ Ck1−n1+ν

k1−n11ν Ck1−n1−µ
p1s1l1−m1

Ck1n1−ν
q1t1l1m1

=
(2k1 + 1)(−1)s1+νf2(k1l1p1s1q1t1;µ, ν)

k1(k1 + 1)
√

(2p1 + 1)(2q1 + 1)
(A.30)

where f2 is the other function which appears in the single fuzzy sphere case in equation

(C.14) of [12]. Explicitly it is given by

f2(k1l1p1s1q1t1;µ, ν)
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= k1(k1 + 1)(2k1 + 1)
√

(2p1 + 1)(2q1 + 1)
∑

km

(−1)k+k1+l1Ckm
p1s11µCk−m

q1t11ν

×
{

l1 k1 p1

1 k k1

} {
l1 k1 q1

1 k k1

}
. (A.31)

We obatin the same result (A.29) with the replacement f1−→(−1)k2+l2+p2f2 and hence the

full 3−vertex correction will be given by

2(L + 1)2
∑

p1s1,p2s2

∑

q1t1

A
(1)
−µ(p1s1p2s2)A

(1)
−ν(q1t1p2 − s2)(−1)s1+s2+ν

×
∑

k1,k2

∑

l1,l2

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)

×[1 − (−1)R+p1+p2][1 − (−1)R+q1+p2]

×
{

p1 k1 l1
L
2

L
2

L
2

} {
q1 k1 l1
L
2

L
2

L
2

} {
p2 k2 l2
L
2

L
2

L
2

}2

×
(

f1(k1l1p1s1q1t1;µ, ν) + (−1)k2+l2+p2f2(k1l1p1s1q1t1;µ, ν)

)
. (A.32)

Let us remark that we must have the conservation laws R+p1+p2 = odd and R+q1+p2 =

odd and hence we must always have p1 + q1 = even. In f1 and f2 the angular momentum k

can only take the values k = p1,k = p1 +1 and k = p1 − 1 or equivalently k = q1,k = q1 +1

and k = q1 − 1. Thus there is only one term in f1 + (−1)k2+l2+p2f2 in which q1 = p1

given by

(√
k1(k1 + 1)l1(l1 + 1)(2p1 + 1)(2q1 + 1)(2k1 + 1)(2l1 + 1)

{
l1 k1 p1

1 p1 k1

}{
k1 l1 p1

1 p1 l1

}
−

k1(k1 + 1)(2k1 + 1)
√

(2p1 + 1)(2q1 + 1)

{
l1 k1 p1

1 p1 k1

}{
l1 k1 p1

1 p1 k1

} )
Cp1m

p1s11µCp1−m
q1t11νδp1q1

(A.33)

This term leads to the contribution ( by using the tables on page 311 of [23] )
∑

p1s1,p2s2

A
(1)
−µ(p1s1p2s2)A

(1)
−ν(p1 − m − νp2 − s2)(−1)s1+s2+νCp1m

p1s11µ

×Cp1−m
p1−m−ν1νp1(p1 + 1)O3(p1, p2) = −TrLL(1)

a A(1)
a O3(∆1,∆2)L(1)

b A
(1)
b . (A.34)

where

O3(p1, p2) = −4(L + 1)2
∑

k1,k2

∑

l1,l2

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)

×[1 − (−1)R+p1+p2 ]

{
p1 k1 l1
L
2

L
2

L
2

}2 {
p2 k2 l2
L
2

L
2

L
2

}2

×k1(k1 + 1)
(
l1(l1 + 1) − k1(k1 + 1)

)

p2
1(p1 + 1)2

. (A.35)
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The remaining terms has the structure

Cp1+1m
p1s11µ Cp1+1−m

q1t11ν η+(k1l1; p1q1) + Cp1−1m
p1s11µ Cp1−1−m

q1t11ν η−(k1l1; p1q1) (A.36)

where

η±(k1l1; p1q1) =
√

(2p1 + 1)(2q1 + 1)k1(k1 + 1)(2k1 + 1)

{
l1 k1 p1

1 p1 ± 1 k1

}
×

(√
l1(l1 + 1)(2l1 + 1)

{
k1 l1 q1

1 p1 ± 1 l1

}
+

√
k1(k1 + 1)(2k1 + 1)

{
l1 k1 q1

1 p1 ± 1 k1

})
.

(A.37)

We have the final contributions

∑

p1s1,p2s2

∑

q1t1

A
(1)
−µ(p1s1p2s2)A

(1)
−ν(q1t1p2 − s2)(−1)s1+s2+νCp1±1m

p1s11µ Cp1±1−m
q1t11ν Σ±(p1, p2)(A.38)

where

Σ± = 2(L + 1)2
∑

k1,k2

∑

l1,l2

(2k1 + 1)(2k2 + 1)

k1(k1 + 1) + k2(k2 + 1)

(2l1 + 1)(2l2 + 1)

l1(l1 + 1) + l2(l2 + 1)

× [1 − (−1)R+p1+p2 ][1 − (−1)R+q1+p2]

{
p1 k1 l1
L
2

L
2

L
2

} {
q1 k1 l1
L
2

L
2

L
2

} {
p2 k2 l2
L
2

L
2

L
2

}2

η±

(A.39)

It is not difficult to show that the contributions (A.38) will involve anticommutators be-

tween A
(1)
a and L

(1)
a instead of commutators. Hence it is of the same type as the scalar

action

TrL[La, Aa]
2
+ (A.40)

Indeed we have shown in [12] that (A.38) ( or more precisely the analogue of (A.38) for a

single fuzzy S2 ) is the sum of four terms each of the form

−TrL[Vi(A
(1)
a ), L(1)

a ]∆ij(∆1,∆2)[Vj(A
(1)
b ), L

(1)
b ] (A.41)

Following the same method used in reference [12] we can give explicit expressions for the

operators Vi and ∆ij by comparing (A.38) and (A.39) from one hand and (A.41) from the

other hand.
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[32] L. Alvarez-Gaumé and J.L.F. Barbon, Non-linear vacuum phenomena in non-commutative

QED, Int. J. Mod. Phys. A 16 (2001) 1123 [hep-th/0006209];

N. Chair and M.M. Sheikh-Jabbari, Pair production by a constant external field in

noncommutative QED, Phys. Lett. B 504 (2001) 141 [hep-th/0009037];

I.F. Riad and M.M. Sheikh-Jabbari, Noncommutative QED and anomalous dipole moments,

JHEP 08 (2000) 045 [hep-th/0008132];

A. Bichl et al., Renormalization of the noncommutative photon self-energy to all orders via

Seiberg-Witten map, JHEP 06 (2001) 013 [hep-th/0104097];

M. Chaichian, M.M. Sheikh-Jabbari and A. Tureanu, Hydrogen atom spectrum and the lamb

shift in noncommutative QED, Phys. Rev. Lett. 86 (2001) 2716 [hep-th/0010175];

Z. Guralnik, R. Jackiw, S.Y. Pi and A.P. Polychronakos, Testing non-commutative QED,

constructing non-commutative MHD, Phys. Lett. B 517 (2001) 450 [hep-th/0106044];

H. Arfaei and M.H. Yavartanoo, Phenomenological consequences of non-commutative QED,

hep-th/0010244;

C. Brouder and A. Frabetti, Noncommutative renormalization for massless QED,

hep-th/0011161;

H. Grosse and Y. Liao, Anomalous c-violating three photon decay of the neutral pion in

noncommutative quantum electrodynamics, Phys. Lett. B 520 (2001) 63 [hep-ph/0104260];

S. Baek, D.K. Ghosh, X.-G. He and W.Y.P. Hwang, Signatures of non-commutative QED at

photon colliders, Phys. Rev. D 64 (2001) 056001 [hep-ph/0103068];

N. Mahajan, Noncommutative QED and γγ scattering, hep-ph/0110148;

X.-J. Wang and M.-L. Yan, Noncommutative QED and muon anomalous magnetic moment,

JHEP 03 (2002) 047 [hep-th/0109095];

S. Godfrey and M.A. Doncheski, Signals for non-commutative QED in e gamma and gamma

gamma collisions, Phys. Rev. D 65 (2002) 015005 [hep-ph/0108268];

S. Godfrey and M.A. Doncheski, Signals for non-commutative QED in eγ and γγ

collisions,hep-ph/0111147.

– 33 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C054004
http://arxiv.org/abs/hep-ph/0305225
http://arxiv.org/abs/hep-th/0301084
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C105010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB556%2C123
http://arxiv.org/abs/hep-ph/0211463
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC29%2C125
http://arxiv.org/abs/hep-ph/0211425
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA18%2C5433
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA18%2C5433
http://arxiv.org/abs/hep-ph/0211416
http://jhep.sissa.it/stdsearch?paper=01%282003%29075
http://arxiv.org/abs/hep-lat/0210017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C108%2C1099
http://arxiv.org/abs/hep-th/0209234
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC27%2C447
http://arxiv.org/abs/hep-ph/0209205
http://arxiv.org/abs/hep-th/0205093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA16%2C1123
http://arxiv.org/abs/hep-th/0006209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB504%2C141
http://arxiv.org/abs/hep-th/0009037
http://jhep.sissa.it/stdsearch?paper=08%282000%29045
http://arxiv.org/abs/hep-th/0008132
http://jhep.sissa.it/stdsearch?paper=06%282001%29013
http://arxiv.org/abs/hep-th/0104097
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C2716
http://arxiv.org/abs/hep-th/0010175
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB517%2C450
http://arxiv.org/abs/hep-th/0106044
http://arxiv.org/abs/hep-th/0010244
http://arxiv.org/abs/hep-th/0011161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB520%2C63
http://arxiv.org/abs/hep-ph/0104260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C056001
http://arxiv.org/abs/hep-ph/0103068
http://arxiv.org/abs/hep-ph/0110148
http://jhep.sissa.it/stdsearch?paper=03%282002%29047
http://arxiv.org/abs/hep-th/0109095
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C015005
http://arxiv.org/abs/hep-ph/0108268
http://arxiv.org/abs/hep-ph/0111147

